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Summary
DCM models associate to a vector of (a) deterministic components and of 
(b) random components of the utility a set of choice probabilities. 
We show that one choice probability allows to uniquely recover :
(1) all the choice probabilities, 
(2) the differences between any random component and a predefined one
(3) all random components consistent with one choice probability. 
When the choice probabilities satisfy the IIA property, we can construct 
random components positively and negatively correlated. 
We characterize all expected maximum utilities consistent with IIA. 
Finally, we find all Generalized Extreme Value models satisfying IIA. 
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Additive Random Utility Models 
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Different ARUM can be generated 
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Standard inversion: 
Recover the deterministic part, v
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covered numerically (using a variant of Brower's Theorem).

This recovery result is known as the "Berry Inversion"; it holds for any ARUM.
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[Early results: Existence of a Random Utility 
Model, given P1,A,….,Pn,A ?]

• DEFINITION A system of choice probabilities, {Pi,A}, is stochastically 
rationalizable if it can be generated by a RUM (Random Utility 
Model): Block & Marschak, 1960, McFadden & Richter, 1990.

• Block and Marschak, derived conditions (“B&M polynomials”) on {Pi,A} 
that guarantee the system {Pi,A} is stochastically rationalizable.
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Assumption A1

Let: δ =: (ε1-εn,..., ε1-εn-1).
A1: The vector δ admits a strictly positive and continuous PDF, fδ(.), 
with respect to the Lebesgue measure of Rn-1.

Note: No finite expectations are required. for εi.
Include for εi Gauchy, Gumbel Laplace, Logistic, Normal, ….
but εi can be defined on a semi-interval as for:
Chi, Exponential, Fréchet, Gamma or Lognormal.
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[Hint! Only differences matter!]
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Handling (1) Recover the P1,C,….Pn-1,C from  Pn,C?
Recall: δ are uniquely determined by one choice probability, e.g. Pn,A.
Since δ generate P1,C,….Pn-1,C  ,then Pn,C is enough to recover all others
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Handling (2) Recover the δ from an unique Pn,C
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Handling (3) Recover all the ε from a unique Pn,C
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(Difference of) of random terms 
in RUM with IIA
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Assume more structure for {Pi,A}?

Work plan: assume that {Pi,A} satisfy the IIA properties.
• We show that δ is uniquely determined.
• We investigate all classes of ε consistent with all ARUM probabilities 

{Pi,A} satisfying IIA.
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Handling (1) Given Pn,C(v)
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Handling (2) Recover all ε under the IIA
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handling (3) Recover the δ under IIA
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Class of models to generate the ε

Consider the following class of ε and the function Φ(x).
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[Examples (1/2)]
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Examples (2/2)
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[Yellott (1977) revisited]
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IIA expected maximum utility
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Definitions and  notations
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Expected utility under IIA
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Expected utility under IIA

Assume εk has a mean normalized to zero, k=1,..,n.
THEOREM
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GEV families satisfying IIA
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GEV with IIA
THEOREM
A GEV model satisfies IIA iif it is a multivariate Gumbel distribution 
with CDF given by:
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Conclusions – more to go….
These results (potentially) be can be applied to:
 the Logit kernel model, and any probability Kernel model,
 the CES demand functions,
more general Fε(x).
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